
DYNAMIC SQL:
Tables/Pivots/Parameters

Steven Tidwell

Who Am I?Who Am I?
Steven Tidwell

• Technical Lead, Custom Client Database Development - Ctuit Software
• 20 + years in the IT World.

• Started with SQL 7
• I have designed and programmed two Point-Of-Sale systems.

• PIMA POS™ - School Lunch Room Software
• SALON POS™ - Beauty Salon scheduling POS System

• Inventory Tracking Software for mobile service based companies

@SQLCODEMONKEY Steven Tidwell

www.sqlcodemonkey.com mybloggerplace.com

Thank You Sponsors!

Turn in your completed Event
Evaluation form at the end of the
day in the Registration area to be
entered in additional drawings.

Want more free training? Check
out the Houston Area SQL
Server User Group which
meets on the 2nd Tuesday of
each month. Details at
http://houston.sqlpass.org

Visit the Sponsor tables to
enter their end of day
raffles.

GOALS FOR TODAYGOALS FOR TODAY
• Create a Dynamic Table at Runtime

• Create Dynamic Headers

• Create a Dynamic SQL Statement to present our
data

WHY USE DYNAMIC SQL?WHY USE DYNAMIC SQL?
• Being successful in the world of database development and administration requires flexibility and the

ability to adapt to ever changing technology. You will face many unknown challenges or situations
where you might not know exactly what kind of data you will be working with at runtime.

• Dynamic SQL is one of the best tools for solving problems in the face of the unknown.

• Once you are acquainted with Dynamic SQL, the applications you can use it for are staggering.
Dynamic SQL allows you to solve scenarios where you are presented with many objects, but you really
do not know all the details of those objects.

PROS
• Reuse code for different tables or other

objects
• Dynamically build tables
• Use variable names in statements that

require constants
• Avoid statements that would be either

impossible or very hard to code because of
the high number of possibilities involved

• Return row sets with a variable number of
columns and/or variable column names

• Allow parameterized filtering with the IN
clause

• Sorting by any column from a table

PROS / CONS OF DYNAMIC SQLPROS / CONS OF DYNAMIC SQL
CONS
• Performance loss: The execution plan for a dynamic query

cannot be cached
• The error management becomes more unreliable. There is no

easy way to validate the dynamic code or control its effects
• Temporary tables from the main statement cannot be used,

unless they are global
• If the algorithm of the main statement has many loops,

calculations or slow queries, that time will add to the time of
executing the dynamic code

• Maintenance is difficult because the schema is hard coded in
the dynamic code. The main statement is harder to understand
than regular code because it is necessary to consider how it
affects the dynamic code, without seeing it.

BUILDING A DYNAMIC QUERYBUILDING A DYNAMIC QUERY
There are 3 main parts to building a DYNAMIC SQL Statement

• Declare a Variable to hold your Dynamic SQL Statement
DECLARE @MySQLVariable NVARCHAR(MAX)

WHY NVARCHAR?
You could use VARCHAR, however, you could potentially lose data if any extended UNICODE
characters were in any of the objects you work with.
FOR CONSISTANCY USE NVARCHAR

• Build the Dynamic SQL command string and store it in the variable you just created:
SET @MySQLVariable = N’SELECT e.MyName FROM dbo.MyTable e’N

• EXEC sp_ExecuteSQL @MySQLVariable

What does the N mean? National Language Character Set

BUILDING A DYNAMIC TABLEBUILDING A DYNAMIC TABLE
We have all built a normal SQL Temp Table

CREATE TABLE #MySQLDemo
(

ID INT IDENTITY(1,1) NOT NULL, Column1 VARCHAR(20), Column2 VARCHAR(20),
Column3 VARCHAR(20)

)

But why do I want to create a Dynamic Table?

What happens if you want Dates to be your column names, and you don’t know
the dates that are going to be chosen when you build the table?

A Dynamic Table will allow you to pass in the name of the columns that you want
in your table at runtime!

BUILDING A DYNAMIC TABLEBUILDING A DYNAMIC TABLE

DEMO: Building Date TableDEMO: Building Date Table

DEMO: Building Base TableDEMO: Building Base Table

DEMO: Building Dynamic TableDEMO: Building Dynamic Table

A PLACE TO PUT YOUR STUFFA PLACE TO PUT YOUR STUFF
“That's all I want, that's all you need in life, is a little place for your stuff, ya know? ”

- George Carlin

• STUFF: The STUFF function inserts a string into another string. It deletes a specified length of
characters in the first string at the start position and then inserts the second string into the first
string at that start position.

• When using Dynamic SQL, the STUFF command allows you to build a string of column headers.
Then we can match those headers, with the headers in our table and PIVOT to SUM the values we
need.

BUT HOW DOES STUFF WORK?

STUFF & XML: Living in Perfect HarmonySTUFF & XML: Living in Perfect Harmony
GET XML element string with FOR XML

• Adding FOR XML PATH to the end of a query allows us to output the results of
the query as XML elements, with the element name contained in the PATH
argument. For example, if we were to run the follow statement:

• By passing in a blank string (FOR XML PATH(‘’)), we get the following results:

,aaa,bbb,ccc,ddd,eee

STOP: We have a leading , in our string!

STUFF & XML: Dropping the ,STUFF & XML: Dropping the ,
Remove the leading comma with STUFF

• The STUFF statement literally “stuffs” one string into another, replacing characters within
the first string. We, however, are using it simply to remove the first character of the
resultant list of values.

The Parts of STUFF

• The string to be “stuffed” (in our case the full list of names with a leading comma)
• The location to start deleting and inserting characters (1, we’re stuffing into a blank string)
• The number of characters to delete (1, being the leading comma)

Now we end of with: aaa,bbb,ccc,ddd,eee

BUILDING HEADERS WITH STUFF & XMLBUILDING HEADERS WITH STUFF & XML

BUILDING HEADERS WITH STUFF & XMLBUILDING HEADERS WITH STUFF & XML

What have we learned so far?What have we learned so far?
• We have learned how to build a table and add columns to it at runtime

• Build custom column headers using STUFF and XML

Now we will put it all together and finish
our DYNAMIC Query

Goals: and fancy disclaimerGoals: and fancy disclaimer
OUR GOALS:

• We will build a Dynamic Query to show the results of items sold by date.

• When we are finished, you can use this example to aggregate any data across a range of
dates.

NOTE: The data we will be working with is taken directly from the PIMA POS™ system that I
wrote. You can get a copy of the database used by visiting www.sqlcodemonkey.com

Disclaimer:
The tables have been altered to only have the relevant data needed for this demo. All names have been randomly generated using “Behind the
Name” database plugin. The sales figures and data are actual items purchased during the time frame that this sample was taken.

Manipulating the DataManipulating the Data
• We will be using 4 tables for our demo:

• Patron – The Name and ID of the person purchasing the items
• Transaction Tables

• Header holds the top level information about the purchase
• Detail holds the actual items that were purchased

• Item – The Name and Item ID
• In order to get the data into a usable format, we must first manipulate the data to be in a layout that

we can PIVOT on.
• We will build a “Pivot Column” that will be created in the SAME format as the Dynamic Column

Headers that we created for our table.
NOTE:
IF THE COLUMNS DO NOT MATCH, YOU WILL NOT BE ABLE TO PIVOT THE DATA

GUESS WHAT?
IT IS DEMO TIME AGAIN!

DEMO: The data we are going to useDEMO: The data we are going to use

Building the OutputBuilding the Output
Using what we learned earlier
• Declare our variable to hold the data

• Create the Select Statement

• Pivot the Data to get into Grid Form

• Do a final select on the data
• DO SELECT INSIDE THE DYNAMIC SQL FOR A TEMP TABLE
• DO SELECT OUTSIDE THE DYNAMIC SQL FOR A GLOBAL TABLE

LET’S PUT IT ALL TOGETHER AND
BUILD THE CODE

DEMO TIME!

DEMO: Building a Subset of All DataDEMO: Building a Subset of All Data

DEMO: The Dynamic QueryDEMO: The Dynamic Query

Getting rid of NULL ValuesGetting rid of NULL Values
Why do we have NULL Values?

• A Null value might occur when there isn’t any data for a particular item and date

How do we get rid of the NULL Values in the data?
• To get rid of NULL Values, we will create a new group of Headers with the ISNULL

command in them.
• Replace the Header columns in the SELECT statement with the new ISNULL columns.

• Rerun the sample to replace NULL with 0

REMOVING NULL VALUES FROM OUTPUTREMOVING NULL VALUES FROM OUTPUT

DEMO: Removing NULL Values with STUFFDEMO: Removing NULL Values with STUFF

DEMO: Removing NULL Values with STUFFDEMO: Removing NULL Values with STUFF

Passing Parameters to Dynamic SQLPassing Parameters to Dynamic SQL
Declaring Parameters

• With a standard SELECT statement, you can pass parameters to the query by
declaring them and then assigning values to the parameter.

Passing Parameters to Dynamic SQLPassing Parameters to Dynamic SQL
Declaring Dynamic Parameters

• In Dynamic SQL, in order to use a parameter from the query, you must pass the parameter
into your dynamic statement.

DEMO: Passing in ParametersDEMO: Passing in Parameters

DEMO: Passing in ParametersDEMO: Passing in Parameters

DYNAMIC SQL: REAL WORLD USAGEDYNAMIC SQL: REAL WORLD USAGE
There are many places that you can use Dynamic SQL in your everyday career.

• Dynamic Search Strings

• Dynamic Sorting

• Running Scripts across databases

• Conditional Select Statements *

SELECT BASED ON PARAMETERSSELECT BASED ON PARAMETERS

Building the SELECT DynamicallyBuilding the SELECT Dynamically

ConclusionConclusion
There are hundred of other task that present themselves for Dynamic SQL

• Conditional Based Searches

• Conditional Based Select Statements

Be Creative
• When you think you have exhausted every possible solution for a problem, think

how you can do it in Dynamic SQL

