Steven Tidwell

< >EPCADSESATU RDAY

DYNAMIC SQL:

Tables/Pivots/Parameters

Who Am |?

ammed two Point-Of-Sale systems.
unch Room Software
y Salon scheduling POS System

Thank You Sponsors!

Visit the Sponsor tables to
enter their end of day
raffles.

Turn in your completed Event
Evaluation form at the end of the
day in the Registration area to be
entered in additional drawings.

Want more free training? Check
out the Houston Area SQL
Server User Group which
meets on the 2"d Tuesday of
each month. Details at
http://houston.sglpass.org

\/z
[% BRENT OZAR Improving#

UNLIMITED®
Aardy it
solutions

DZALENIC
SentryOne.

sparkhound

Success is our platform”

Mini= nuwuare

’ SQLDocKit
by acceleratio

% PASS
< > SQLSATURDAY
HOUSTON | JUN 17 2017

- GOALS FOR TODAY

» Create a Dynamic Table at Runtime
* Create Dynamic Headers

* Create a Dynamic SQL Statement to present our
data

<D

~ WHY USE DYNAMIC SQL?

Being successful in the world of database development and administration requires flexibility and the
ability to adapt to ever changing technology. You will face many unknown challenges or situations
where you might not know exactly what kind of data you will be working with at runtime.

Dynamic SQL is one of the best tools for solving problems in the face of the unknown.

Once you are acquainted with Dynamic SQL, the applications you can use it for are staggering.
Dynamic SQL allows you to solve scenarios where you are presented with many objects, but you really
do not know all the details of those objects.

<D

PROS / CONS OF DYNAMIC SQL

PROS

CONS

Reuse code for different tables or other
objects

Dynamically build tables

Use variable names in statements that
require constants

Avoid statements that would be either
impossible or very hard to code because of
the high number of possibilities involved

Return row sets with a variable number of
columns and/or variable column names

Allow parameterized filtering with the IN
clause

Sorting by any column from a table

Performance loss: The execution plan for a dynamic query
cannot be cached

The error management becomes more unreliable. There is no
easy way to validate the dynamic code or control its effects

Temporary tables from the main statement cannot be used,
unless they are global

If the algorithm of the main statement has many loops,
calculations or slow queries, that time will add to the time of
executing the dynamic code

Maintenance is difficult because the schema is hard coded in
the dynamic code. The main statement is harder to understand
than regular code because it is necessary to consider how it
affects the dynamic code, without seeing it.

<D

BUILDING A DYNAMIC QUERY

There are 3 main parts to building a DYNAMIC SQL Statement

» Declare a Variable to hold your Dynamic SQL Statement
DECLARE @MySQLVariable NVARCHAR(MAX)

WHY NVARCHAR?

You could use VARCHAR, however, you could potentially lose data if any extended UNICODE
characters were in any of the objects you work with.
FOR CONSISTANCY USE NVARCHAR

 Build the Dynamic SQL command string and store it in the variable you just created:
SET @MySQLVariable = N'SELECT e.MyName FROM dbo.MyTable e’

« EXEC sp_ExecuteSQL @MySQLVariable

What does the N mean? National Language Character Set

<D

BUILDING A DYNAMIC TABLE

We have all built a normal SQL Temp Table

CREATE TABLE #MySQLDemoR I N G TA B L E

(O
ID INT IDEBI. #(,%) WOI NULL, Column1 VARCHAR(20), Column2 VARCHAR(20),
Column3 VARCHAR(20)

)

But why do | want to create a Dynamic Table?

What happens if you want Dates to be your column names, and you don’t know
the dates that are going to be chosen when you build the table?

A Dynamic Table will allow you to pass in the name of the columns that you want

in your table at runtime! ! ! EXC I TI N G ! !

<D

- BUILDING A DYNAMIC TABLE

STOP
DEMO TIME

<D

DEMO: Building Date Table

| -~ SECTION @ - BUILDING A DATE TABLE --
JIF 0BIECT_ID(tempdb.dbo.#MyDates’) IS NOT NULL
] BEGIN
DROP TABLE #MyDates
I END
CREATE TABLE #MyDates

(
)

DateID INT IDENTITY(1,1) MOT MNULL, tDate SMALLDATETIME, DOW VARCHAR(13), ColumnHeader VARCHAR(48)

-- FILL THE DATE TABLE USING THE 5TART AND END PARAMETERS --
JIMSERT INTO #MyDates
(tDate, DOW, ColumnHeader)
SELECT
TOP (DATEDIFF(DAY,@Start,@End) + 1)
"tDate" = DATEADD(DAY, ROW_NUMEER() OVER(ORDER BY a.0BJECT ID) -1, fistart),
"DOW" = DATENAME(WEEKDAY, DATEADD(DAY, ROW_NUMBER() OVER(ORDER BY a.OBJECT_ID) -1, @start)),
-- // THE COLUMN HEADER BUILT WILL BE THE SAME USED IN THE PIVOT TABLE \\ --
"ColumnHeader"” =
CONCAT (DATENAME (WEEKDAY, DATEADD(DAY, ROW_NUMBER() OVER(ORDER BY a.OBJECT ID) -1, @iStart)), SPACE(S),

FORMAT (DATEADD (DAY, ROW_NUMBER() OVER(ORDER BY a.0BJECT ID) -1, @start), 'MM/dd/yyyy'))
FROM

sys.ALL_OBJECTS &

] CROSS JOIN sys.ALL_OBJIECTS b; qi: :;D

DEMO: Building Base Table

‘—— SECTION 1 -- BUILDING BASE TABLE FOR DYNAMIC TABLE --
?IF OBJECT _ID("tempdb.dbo.#ItemSalesByDate’) IS NOT MNULL
-] BEGIN

DROP TABLE #ItemSalesByDate
 END
-|CREATE TABLE #ItemSalesByDate

(
)

TtemID INT, ItemMName VARCHAR(188)

<D

DEMO: Building Dynamic Table

]-- SECTION 1 -- BUILDING THE COLUMN STRUCTURE FOR THE DYNAMIC TABLE --
- // STEP 1 \\ --

1DECLARE
@ColumnNameToAdd NVARCHAR(MAX), -- THIS HOLDS THE COLUMN NAMES CREATED IN THE DATE TABLE

] {@DynamicSQL NVARCHAR(MAX) -- THIS HOLDS THE DYNAMIC SQL CODE

-- S5ECTION 1 -- 5ET THE PARAMETERS FOR THE TABLE

| -- f/ STEP 2 \\ --
SET {@lynamicSQL = N'ALTER TABLE #ItemSalesByDate ADD [2] MONEY;'
SET @ColumnNameToldd = '

|SELECT
@ColumnNameToAdd = @ColumnNameToAdd + REPLACE(@DynamicSQL, "'

FROM

_ #MyDates

|-- // NOW EXECUTE THE DYNAMIC SQL \\ --
-~ // STEP 4 \\ --

EXEC sp ExecuteSQL [@CoclumnNameToAdd

,ColumnHeader)

7 e
Sh_nr Us

<D

A PLACE TO PUT YOUR STUFF

“That's all | want, that's all you need in life, is a little place for your stuff, ya know? ”
- George Carlin

» STUFF: The STUFF function inserts a string into another string. It deletes a specified length of

characters in the first string at the start position and then inserts the second string into the first
string at that start position.

* When using Dynamic SQL, the STUFF command allows you to build a string of column headers.
Then we can match those headers, with the headers in our table and PIVOT to SUM the values we

need.

BUT HOW DOES STUFF WORK?
<2

STUFF & XML: Living in Perfect Harmony

GET XML element string with FOR XML

« Adding FOR XML PATH to the end of a query allows us to output the results of
the query as XML elements, with the element name contained in the PATH
argument. For example, if we were to run the follow statement:

SELECT '," + ColumnName FROM #Templ FOR XML PATH('')

* By passing in a blank string (FOR XML PATH(")), we get the following results:
,aaa,bbb,ccc,ddd,eee

STOP: We have a leading , in our string!
<

STUFF & XML: Dropping the

Remove the leading comma with STUFF

» The STUFF statement literally “stuffs” one string into another, replacing characters within
the first string. We, however, are using it simply to remove the first character of the
resultant list of values.

SELECT abc = STUFF(({ SELECT '," + ColumnName FROM #Templ FOR XML PATH('')),1,1,'") FROM #Templ

The Parts of STUFF

» The string to be “stuffed” (in our case the full list of names with a leading comma)
» The location to start deleting and inserting characters (1, we're stuffing into a blank string)
» The number of characters to delete (1, being the leading comma)

Now we end of with: aaa,bbb,ccc,ddd,eee

<D

- BUILDING HEADERS WITH STUFF & XML

STOP
DEMO TIME

<D

BUILDING HEADERS WITH STUFF & XML

-- DEMO SECTION 2 - USING 5TUFF TO BUILD THE COLUMNS FOR THE PIVOT TABLE --
DECLARE (@PivotColumnName NVARCHAR(MAX)
SET @PivotColumnName =
STUFF((
SELECT '," + QUOTENAME(ColumnHeader)
FROM #MyDates md
GROUP BY ColumnHeader, DateID
ORDER BY DatelD
FOR XML PATH(''), TYPE
J.value('. ", "NVARCHAR({MAX)')
Jlrlrllj}

.Sh!!vth:ez:>

What have we learned so far?

 We have learned how to build a table and add columns to it at runtime

 Build custom column headers using STUFF and XML

Now we will put it all together and finish
our DYNAMIC Query

<D

Goals: and fancy disclaimer

OUR GOALS:

» We will build a Dynamic Query to show the results of items sold by date.

« When we are finished, you can use this example to aggregate any data across a range of
dates.

NOTE: The data we will be working with is taken directly from the PIMA POS™ system that |
wrote. You can get a copy of the database used by visiting www.sqlcodemonkey.com

Disclaimer:
The tables have been altered to only have the relevant data needed for this demo. All names have been randomly generated using "Behind the
Name" database plugin. The sales figures and data are actual items purchased during the time frame that this sample was taken.

<D

Manipulating the Data

« We will be using 4 tables for our demo:
* Patron — The Name and ID of the person purchasing the items

* Transaction Tables
« Header holds the top level information about the purchase

» Detail holds the actual items that were purchased
* Item —The Name and Item ID
In order to get the data into a usable format, we must first manipulate the data to be in a layout that

we can PIVOT on.
We will build a “Pivot Column” that will be created in the SAME format as the Dynamic Column

Headers that we created for our table.

NOTE:
IF THE COLUMNS DO NOT MATCH, YOU WILL NOT BE ABLE TO PIVOT THE DATA

GUESS WHAT?
IT IS DEMO TIME AGAIN!

<D

DEMO: The data we are going to use

PatronlD FirstName LastName isValid

1 ' Stephanie T 1
TransHeadlD PatronlD TotalSale AmountTendered SaleDate SaleType Transactionlane Cashier [sValid
: 1168 3 0.00 0.00 20100310 10:03:00 NULL 9 361
TransactionDetallD ~ TransHeadlD temlD RemPrice DOB |sValid
3799 1184 % 600 2010080910:01:00 1

1 0.00 1

Building the Output

Using what we learned earlier
* Declare our variable to hold the data

» Create the Select Statement
* Pivot the Data to get into Grid Form

Do afinal select on the data
DO SELECT INSIDE THE DYNAMIC SQL FOR A TEMP TABLE
DO SELECT OUTSIDE THE DYNAMIC SQL FOR A GLOBAL TABLE

LET’'S PUT IT ALL TOGETHER AND
BUILD THE CODE
DEMO TIME!

DEMO: Building a Subset of All Data

-- INSERT THE SMALL SET OF DATA INTO TEMP TABLE --
|[TNSERT INTO #SmallSet

(ColumnHeader, ItemID, ItemName, Amount)
SELECT

-- // NOTE: THE HEADER IS BUILT THE EXACT SAME WAS AS THE DATE TABLE COLUMN NAME \\ --

COMNCAT (DATENAME (WEEKDAY, td.DOB), SPACE(S), FORMAT(td.DOB, 'MM/dd/yyyy')),
i.ItemID, i.ItemName, td.ItemPrice
FROM
dbo.Transaction Header th
INMER J0IN dbo.Transaction Detail td ON td.TransHeadID = th.TransHeadID
THNER JOIN dbo.Item i ON i.ItemID = td.ItemID
WHERE
td.DOB BETWEEN @Start AND @End
AND th.TotalSale IS NOT MNULL
AND th.IsValid <> 99

<D

DEMO: The Dynamic Query

DECLARE {@DynamicOutput NVARCHAR(MAX)

SET @ynamicOutput = N’
INSERT INTQ #ItemSalesByDate
SELECT
ItemId, ItemName, ' + @PivotColumnName +
FROM
#5mallSet s
PIVOT
(SUM{AMOUNT) FOR ColumnHeader IN (' + @PivotColumnName + ")) AS PVT
ORDER BY
ItemName

-- S5INCE WE ARE INSERTING INTO A TEMP TAELE - AND WE MEED COLUMMW HEADERS FOR THE OQUTPUT --
-- WE MUST DO OUR SELECT STATEMENT IN THE DYNAMIC SQL --

SELECT

ItemId, ItemName, ' + @PivotColumnName +
FROM

#ItemSalesByDate '

EXEC sp_ExecuteSQL @DynamicOutput

Getting rid of NULL Values

Why do we have NULL Values?

* A Null value might occur when there isn’t any data for a particular item and date

How do we get rid of the NULL Values in the data?

To get rid of NULL Values, we will create a new group of Headers with the ISNULL
command in them.

* Replace the Header columns in the SELECT statement with the new ISNULL columns.

* Rerun the sample to replace NULL with O

<D

-~ REMOVING NULL VALUES FROM OUTPUT

STOP
DEMO TIME

<D

DEMO: Removing NULL Values with STUFF

DECLARE [@IsNullColumns NVARCHAR(MAX)

SET @IsNullColumns =
STUFF((
SELECT ',ISNULL(" + QUOTENAME(ColumnHeader) + ',8)’
FROM #MyDates
GROUP BY ColumnHeader, DateID
ORDER BY DatelD
FOR XML PATH(''), TYPE
J.value('. "', "NVARCHAR(MAX) ')
1,1,)5

<D

DEMO: Removing NULL Values with STUFF

DECLARE @DynamicOutput_ MNONULLS NVARCHAR(MAX)
SET {@DynamicOutput NONULLS = N'
INSERT INTO #ItemSalesByDate

SELECT
ItemID, ItemName, ' + @IsNullColumns + '
FROM
#smallset =
PIWVOT
(SUM{AMOUNT) FOR ColumnHeader IN (' + @PivotColumnMame + ")) AS PVT
ORDER BY
TtemMame

SELECT

ItemID, ItemName, ' + @PivotColumnName +
FROM

#ItemSalesbyDate '

EXEC sp ExecuteSQL @lynamicOutput NONULLS

Passing Parameters to Dynamic SQL

Declaring Parameters

« With a standard SELECT statement, you can pass parameters to the query by
declaring them and then assigning values to the parameter.

IDECLARE @ItemID INT
SET @ItemID = 228

FISELECT

ItemID, ItemName, ItemPrice
FROM

dbo.Item
WHERE

TtemID = @ItemID|

<D

Passing Parameters to Dynamic SQL

Declaring Dynamic Parameters

* In Dynamic SQL, in order to use a parameter from the query, you must pass the parameter
into your dynamic statement.

DEMO TIME

<D

DEMO: Passing in Parameters

DECLARE {@Params NVARCHAR(MAX)

SET @Params = N'@SearchString IN VARCHAR(S8)'

<D

DEMO: Passing in Parameters

DECLARE (@DynamicOutput_MNONULL_SearchString NWARCHAR (MAX)
SET @DynamicQutput NONULL_SearchString = N'
INSERT INTO #ItemSalesByDate

SELECT
ITtemID, ItemMName, ' + @IsNullColumns +
FROM
#Smallset s
PIWVOT
(SUM{AMOUNT) FOR ColumnHeader IN (' + @PivotColumnNMName + ')) AS PVT
WHERE
ItemName = @Search5tring_IN
ORDER BY
ItemMame

SELECT i
ItemID, ItemName, ' + @PivotColumnName +

g ™
FROM
#ItemSalesByDate s Us

EXEC sp_ExecuteSQL [@DynamicOutput_MNONULL_SearchString, @Params, @SearchString_IN = {@SearchString qi: :;D

DYNAMIC SQL: REAL WORLD USAGE

There are many places that you can use Dynamic SQL in your everyday career.
» Dynamic Search Strings

« Dynamic Sorting
* Running Scripts across databases

 Conditional Select Statements *

<D

SELECT BASED ON PARAMETERS

JUSE SQLCodeMonkey
-IDECLARE
@paraml INT = 1

#IF @paraml = 1

? BEGIN
= SELECT i.ItemID, i.ItemName
FROM
i dbo.Ttem i
END

JIF [@paraml = 2

? BEGIN
| SELECT i.ItemID, i.ItemName
FROM
dbo.item i
i GROUP BY i.ItemID, i.ItemName
END

-1IF @paraml = 3

? BEGIN
| SELECT i.ItemID, i.ItemName
FROM

dbo.Item i
ORDER BY i.ItemName DESC
EMND

Building the SELECT Dynamically

DECLARE fdparaml INT = 3
DECLARE (@DynamicSQL WVARCHAR(MAX)

ISET {@DynamicSQL = N
SELECT
i.ItemID, i.ItemName
FROM
) dbo.Item 1 '
|IF (@paraml = 2
] BEGIN
] SET {@DynamicSQL += N’
GROUP BY i.ItemId, i.ItemName'
~ END
|ELSE IF (dparaml = 3
] BEGIN
] SET {@DynamicSQL += N’
ORDER BY i.ItemName DESC'
END

EXEC sp_ ExecuteSQL @DynamicSQL

<D

Conclusion

There are hundred of other task that present themselves for Dynamic SQL
« Conditional Based Searches

 Conditional Based Select Statements

Be Creative
» When you think you have exhausted every possible solution for a problem, think
how you can do it in Dynamic SQL

2?2 QUESTIONS ??

<D

